

Electromagnetic interference shielding effects of polyaniline-coated multi-wall carbon nanotubes/maghemite nanocomposites

Jumi Yun · Hyung-II Kim

Received: 27 April 2011 / Revised: 4 August 2011 / Accepted: 7 October 2011 /

Published online: 15 October 2011

© Springer-Verlag 2011

Abstract Highly conductive nanocomposites were prepared by in situ polymerization of polyaniline (PANI) and multi-walled carbon nanotubes (MWCNTs) as electromagnetic interference shielding materials. γ -Fe₂O₃ nanoparticles were also incorporated in the nanocomposites to improve the ferromagnetic properties. SEM and TEM images showed the uniformly coated PANI on the surface of MWCNTs and γ -Fe₂O₃. XRD peaks also confirmed the presence of MWCNT and γ -Fe₂O₃ in the nanocomposites. The nanocomposites showed significant improvement in permittivity, permeability, and electromagnetic interference shielding efficiency due to the conductive effect of MWCNTs and the magnetic effect of γ -Fe₂O₃. The electromagnetic interference shielding efficiency of nanocomposites increased up to 34.1 dB due to the synergetic effect of reflection and absorption of electromagnetic interference by MWCNTs and γ -Fe₂O₃ additives.

Keywords Electromagnetic interference shielding · Polyaniline · Carbon nanotubes · Maghemite · Nanocomposite

Introduction

The proliferation of electronics and instrumentation in commercial, industrial, healthcare, and defense sectors has led to new pollution known as electromagnetic interference (EMI) [1]. It is caused by the interference effects induced by electric and magnetic fields, emanating from wide range of electrical circuitry [2]. The interference among business machines, process equipments, consumer products, and other instruments may lead to either disturbance of normal performance or complete

J. Yun · H.-I. Kim (✉)

Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University, Daejeon 305-764, Republic of Korea
e-mail: hikim@cnu.ac.kr

malfunction. The disturbances across communication channels, automation, and process control may lead to loss of time, energy, resources, and human health. Therefore, the EMI shielding materials are studied extensively. Although metals were the most common materials for EMI shielding traditionally, their disadvantages include high density, susceptibility to corrosion, complex, and uneconomic processing [3, 4].

Polymer/inorganic nanocomposites have attracted the attention as EMI shielding materials due to the combined nature of flexibilities, improved processability of polymers, high modulus, transparency, surface hardness, and heat resistance [5]. The composites of conducting polymer containing magnetic nanoparticles have attracted interests due to the unique combination of magnetic, electric, and optical properties. They have many potential applications in EMI shielding, electrochromic device, and non-linear optical system [6–8]. Among various conducting polymers, polyaniline (PANi) has been regarded as the candidate for EMI shielding because of its various structures, special doping mechanism, excellent environmental stability, favorable solution processability, and wide applications as electronic materials [9, 10]. Among inorganic nanoparticles, iron oxides have received great attention as EMI shielding materials due to the magnetic properties as well as extensive applications such as color imaging, recording media, and ferrofluids.

Carbon nanotubes (CNTs) also attract the increased attention from material scientists. CNTs have been used to improve the mechanical and thermal properties of composites. CNTs also impart the electrical conductivity to the composite even at lower content, which is an important factor in the composites for EMI shielding. The difficulty in using CNTs as conductive additive is the poor dispersion of CNTs in composite, resulting in the interior electric and mechanical properties [11–13].

In this study, highly conductive PANi and multi-walled carbon nanotubes (MWCNTs) nanocomposites were prepared by in situ polymerization for electromagnetic interference shielding. γ -Fe₂O₃ nanoparticles were incorporated to improve the ferromagnetic properties of the nanocomposites. The surface treatment of MWCNTs was carried out using oxyfluorination to improve the dispersion of MWCNTs in the composite based on previous works [14]. The synergetic effects of using these magnetic and conductive ingredients were investigated based on morphology and EMI shielding behavior.

Experimental

Materials

Aniline, ammonium persulfate (APS), and hydrochloride (HCl) were obtained from Aldrich. Aniline was distilled in vacuum before use. γ -Fe₂O₃ (<50 nm, Aldrich) and MWCNTs (average diameter: 20–50 nm, Aldrich) were used as functional additives for nanocomposites.

Preparation of PANi/MWCNT/ γ -Fe₂O₃ nanocomposites

Oxyfluorination of MWCNT was carried out to modify the surface properties of MWCNTs. Oxyfluorination was carried out at 1 bar for 3 min with the oxygen to

fluorine gas ratio of 8:2. The hydrophobic surface of MWCNTs was modified to carry the hydrophilic functional groups by oxyfluorination resulting in the improved dispersion of MWCNTs in hydrophilic media. PANi/MWCNT/ γ -Fe₂O₃ nanocomposites were prepared by the oxidation of aniline hydrochloride dissolved in ethanol with an aqueous solution of ammonium peroxide in the presence of oxyfluorinated MWCNTs and γ -Fe₂O₃. In typical synthetic process, equal volumes of HCl solutions containing 5 wt% oxyfluorinated MWCNTs, γ -Fe₂O₃, and aniline monomer were sonicated for 2 h to form the uniform suspensions. APS dissolved in HCl solution was added slowly into the aniline solution to initiate the polymerization. The reaction mixture was reacted for 6 h at 4 °C with stirring to have aniline fully polymerized. The synthesized PANi/MWCNT/ γ -Fe₂O₃ nanocomposites were filtered and rinsed several times with distilled water, acetone, and methanol, respectively. Various nanocomposites are classified in Table 1.

Characterization

Field emission scanning electron microscopy (FE-SEM, Hitachi, S-5500) was used to investigate the surface morphology. Images were taken without prior treatment to ensure the acquisition of accurate images. The diameter of nanofiber and the size of cluster were measured by the software program installed in the FE-SEM. The morphology of nanocomposites was also examined using field emission transmission electron microscopy (FE-TEM, Tecnai G² F30 S-TWIN). FE-TEM samples were prepared by dispersing the nanocomposites in isopropanol under sonication and placing small drops of suspension on the carbon-coated copper grids.

The presence of MWCNT and γ -Fe₂O₃ in nanocomposite was confirmed by X-ray diffraction (XRD, Rigaku, D/MAX-2200 Ultima/PC) in scattering range (2 θ) of 10°–60° with a scan rate of 0.02° s⁻¹ and slit width of 0.1 mm.

The magnetic measurements of the samples were performed using the vibrating sample magnetometer (VSM, Lakeshore Cryotronics, model 7304) with a maximum magnetic field of 1.2 T. The sample was placed in Perspex sample holder which was vibrated horizontally with the frequency of 76 Hz.

The electrical conductivity of the samples was measured using a four-probe method. The samples for measuring the resistance were prepared by applying pressure of 1000 psi without any binder. The sample was pellet type with about 10 mm in diameter and 2 mm in thickness. The pellet type samples were cemented with silver paint to Pt leads which were printed on an alumina plate to avoid the contact resistance. The resistance was measured three times with a four-probe

Table 1 Classification of PANi/MWCNT/ γ -Fe₂O₃ nanocomposites

Abbreviation	Compositions		
	Aniline	γ -Fe ₂ O ₃	MWCNT
PANi	O	–	–
PF	O	O	–
PC	O	–	O
PCF	O	O	O

method at room temperature with the probe head station and the ASTM F1529-97 method. The electrical conductivity (σ) was calculated using the following equations [15]:

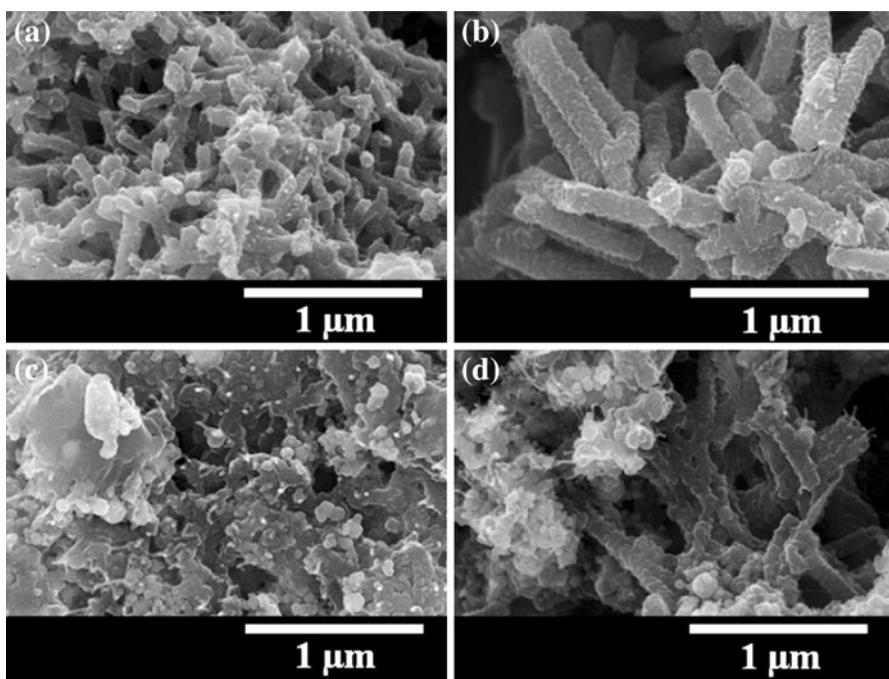
$$\rho = R_s \times t \text{ (}\Omega \text{ cm)}$$

$$\sigma = 1/\rho \text{ (S/cm)}$$

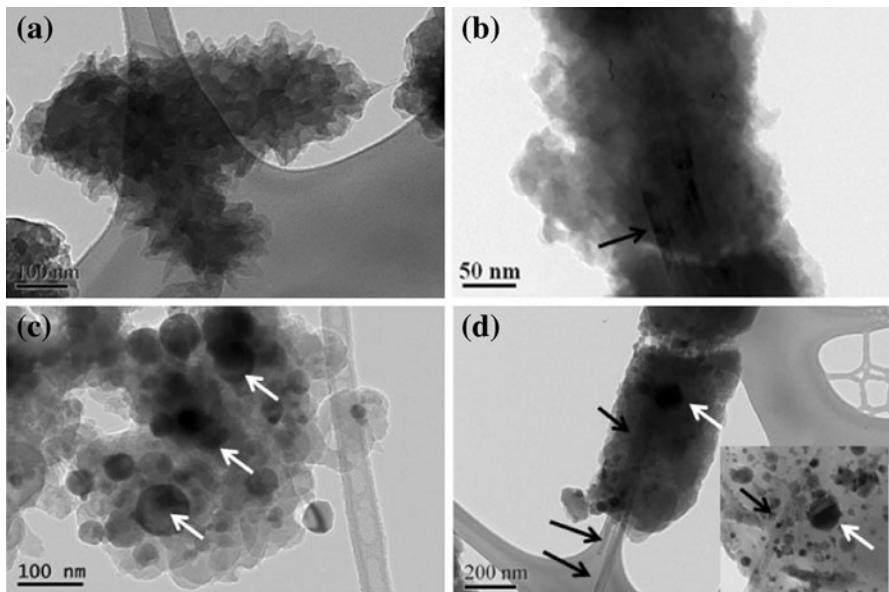
where ρ and t are the bulk resistivity and the thickness of sample, respectively.

Permittivity, magnetic permeability, and EMI shielding efficiency (SE) were obtained according to the ASTM D-4935-99 method using a network analyzer (Agilent, E5071A) equipped with an amplifier and a scattering parameter (S-parameter) test set over the frequency range of 800 MHz–2.5 GHz. Annular disks were prepared with a punching machine and installed into a test tool as depicted in previous work [15]. EMI SE was calculated using S parameters with the equations found in the literatures [16–18].

Results and discussion


Morphology

Figures 1a and 2a show SEM and TEM images of PANi prepared from aniline solutions. The formation of self-assembled micelle structure of PANi was suggested for the aniline polymerization with acidic dopant by several researchers [19–21] and it was confirmed by Fig. 1a, b. Figure 1b illustrates the PANi-coated MWCNTs of core–shell morphology. The uniform deposition of PANi on the surface of MWCNTs is also confirmed by TEM in Fig. 2b. Aniline could be easily adsorbed on the surface-modified MWCNTs resulting in the template polymerization [22]. The formation of PC nanocomposite is represented schematically in Scheme 1a.


PF nanocomposites were prepared by in situ polymerization to reduce the agglomeration of γ -Fe₂O₃ nanoparticles. The color of reactant solution changed to green upon polymerization of aniline in the presence of γ -Fe₂O₃. γ -Fe₂O₃ nanocomposites showed the morphology of uniformly dispersed γ -Fe₂O₃ nanoparticles in PANi as shown in Fig. 2c, d. The formations of PF and PCF nanocomposites are represented schematically in Scheme 1b, c, respectively. PF and PCF nanocomposites were found to show the magnetic response in the applied magnetic field. Therefore, these nanocomposites could be separated from the suspension by magnet.

X-ray diffraction analysis

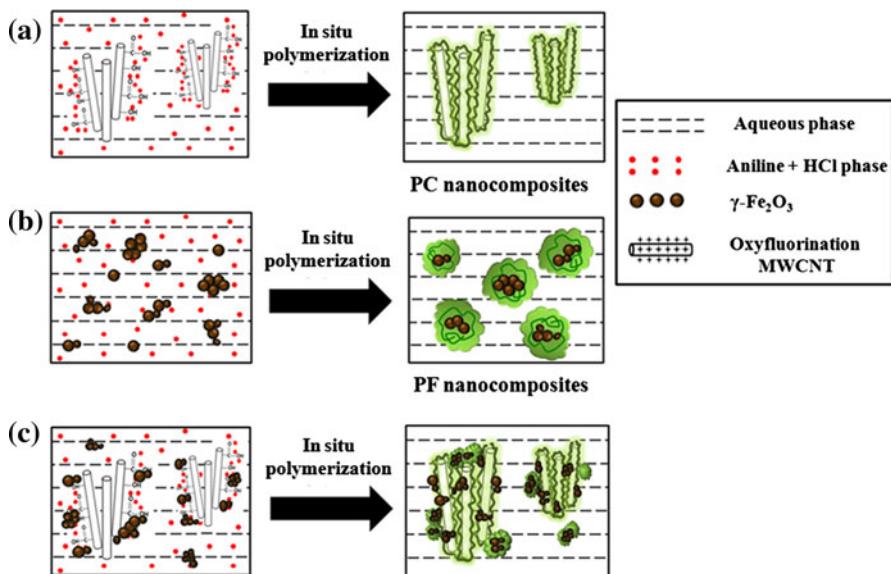
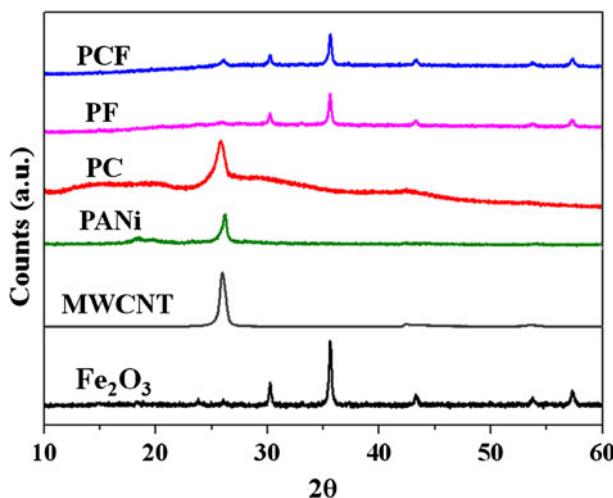

XRD studies were carried out to identify γ -Fe₂O₃ and MWCNT in the nanocomposites as shown in Fig. 3. PF and PCF nanocomposites showed the γ -Fe₂O₃ peaks clearly demonstrating that the structural changes did not occur in γ -Fe₂O₃ during in situ polymerization. XRD peak at 26.5° is attributed to the graphite-structured carbons (002) of MWCNTs. PANi also showed the peak at 26.5° indicating the aromatic carbon rings.

Fig. 1 SEM images of various nanocomposites: **a** PANi, **b** PC, **c** PF, and **d** PCF

Fig. 2 Morphologies of **a** PANi, **b** PC, **c** PF, and **d** PCF observed by TEM. *Black* and *white* arrows indicate MWCNT and γ - Fe_2O_3 , respectively



Scheme 1 Schematic representation of formation of PC, PF, and PCF nanocomposites

Electrical and magnetic properties

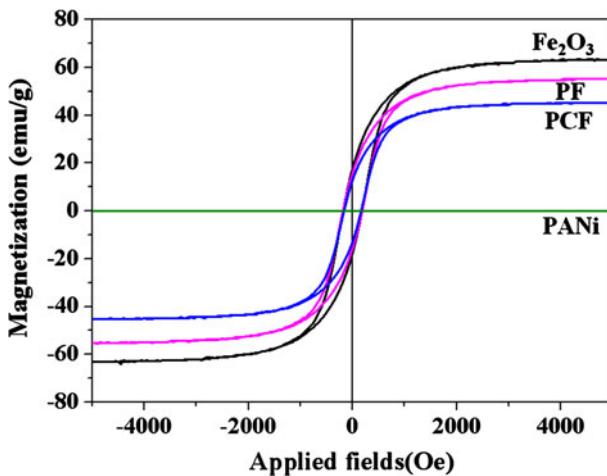
Electrical and magnetic properties of nanocomposites are shown in Table 2 and Fig. 4. When PANi was coated on MWCNTs, the conductivity increased considerably from 3.08 to 15.39 S/cm. The improved conductivity of nanocomposites is mainly due to the effective combination of the intrinsic conductivities of MWCNT and PANi [23, 24]. The conductivity of MWCNT pellets is usually much lower than the intrinsic conductivity of the MWCNTs because the pellets of non-coated MWCNTs contain mechanically disordered and entangled MWCNT masses in which individual tubes are not packed efficiently to maximize the intertube contact area. Intertube contact area of non-coated MWCNTs is probably small because MWCNTs resist the deformation under compression due to higher mechanical strength [24]. PANi-coating on MWCNTs is favorable in increasing the intertube contact area due to the increased tube diameter and the relatively softer PANi phase. Entanglements among PANi chains on the surface of contacting MWCNTs may also shorten the circuit intertube tunneling pathways, providing the conductive polymer paths bridging [24]. The decrease in conductivity of γ -Fe₂O₃-contained nanocomposites is due to the decrease in the proton doping level and blockage of conducting path by the γ -Fe₂O₃ embedded in the PANi matrix.

The effect of γ -Fe₂O₃ addition on the magnetization of nanocomposites was investigated and variations in saturated magnetization (Ms) and coercive force (Hc) are presented in Fig. 4 and Table 2. Pristine γ -Fe₂O₃ had Ms of 21.1 emu/g and Hc of 169 Oe, respectively. PF and PCF showed the obvious magnetic properties

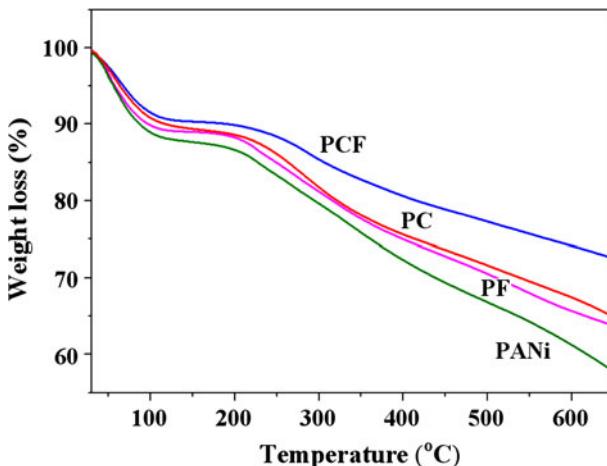
Fig. 3 XRD patterns of various nanocomposites

Table 2 Electrical and magnetic properties of nanocomposites

Sample	Conductivity (S/cm)	Ms (emu/g)	Hc (Oe)
γ -Fe ₂ O ₃	–	21.1	169.0
PANI	3.08	–	–
PF	1.98	19.3	149.0
PC	15.39	–	–
PCF	12.55	15.0	115.5
MWCNT	10.12	–	–


Ms saturated magnetization

Hc coercive force


although both Ms and Hc decreased somewhat due to the dilution effect. *M–H* hysteresis loops were investigated for PF and PCF. Open-loop hysteresis was observed for both PF and PCF, indicating the presence of well-dispersed superparamagnetic nanoparticles in the nanocomposites [25–27]. The magnetization property of PANi was too small to sense the effect of applied magnetic field. This result is correlated well with the results presented by other groups [28, 29].

Thermal stability

The effect of MWCNTs and γ -Fe₂O₃ on the thermal stability of nanocomposites was studied as shown in Fig. 5. The evaporation of moisture adsorbed on the nanocomposites is observed below 100 °C. Major degradation of PANi occurred below 200 °C [30]. However, the degradation rate decreased significantly by incorporating γ -Fe₂O₃ and MWCNT in the nanocomposites indicating the favorable

Fig. 4 M – H hysteresis loops of PANi, γ - Fe_2O_3 , PF, and PCF nanocomposites at room temperature

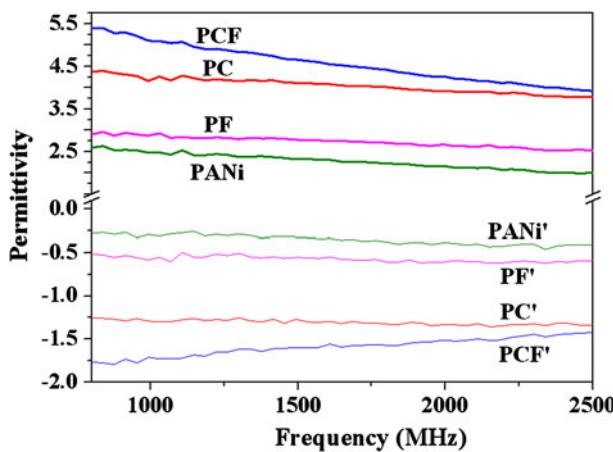


Fig. 5 TGA thermograms of various nanocomposites

interactions with PANi. The adsorption of free radicals generated during degradation on MWCNTs could also contribute to the thermal stability in some extent [31].

EMI shielding characteristics

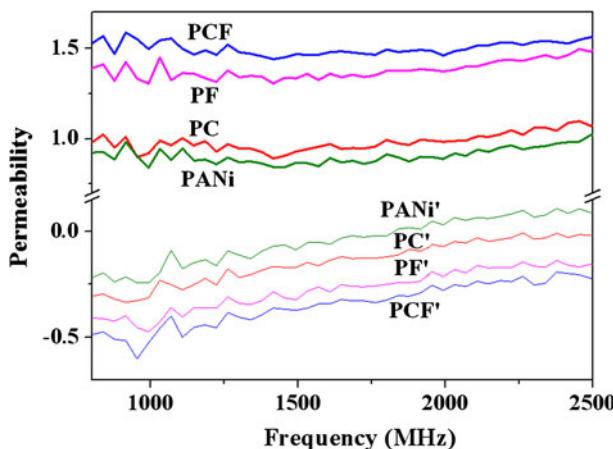
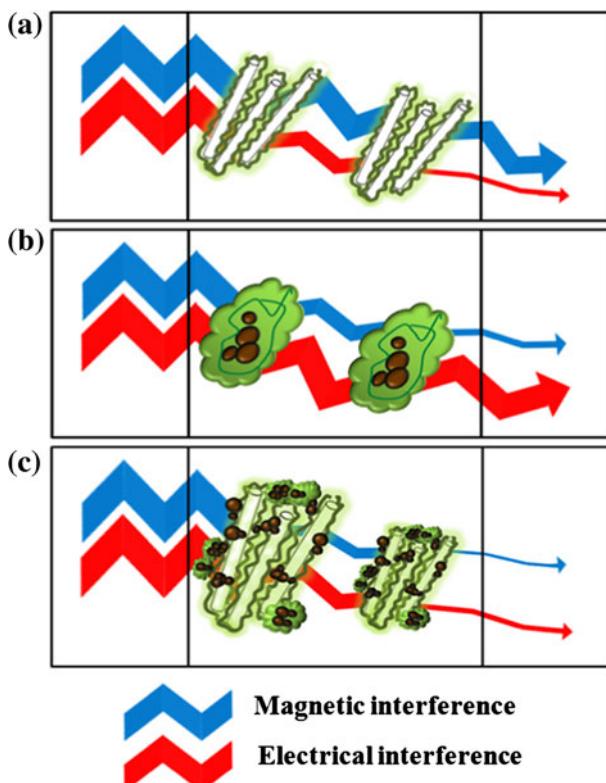

The permittivities of nanocomposites are shown in Fig. 6. The real (ϵ_r) and imaginary permittivities (ϵ_i) increased mainly by incorporating MWCNTs in the nanocomposites. The permittivity of PC increased more than twice compared with that of PANi due to the high electrical conductivity of MWCNTs [32–35].


Fig. 6 Permittivities of PANi, PF, PC, and PCF nanocomposites

The permeabilities of nanocomposites are presented in Fig. 7. The permeability increased significantly for the nanocomposites containing γ -Fe₂O₃ which has excellent magnetic property.


EMI SEs of nanocomposites are presented in Fig. 8. EMI SE of nanocomposites increased noticeably due to the contributions of higher permittivity of MWCNTs and higher permeability of γ -Fe₂O₃, respectively. The contributions of MWCNTs and γ -Fe₂O₃ to EMI SE are represented schematically in Scheme 2. The highly conductive MWCNTs improve EMI SE by decreasing the electrical interference effectively. On the other hand, the magnetic γ -Fe₂O₃ improves EMI SE mainly by decreasing the magnetic interference.

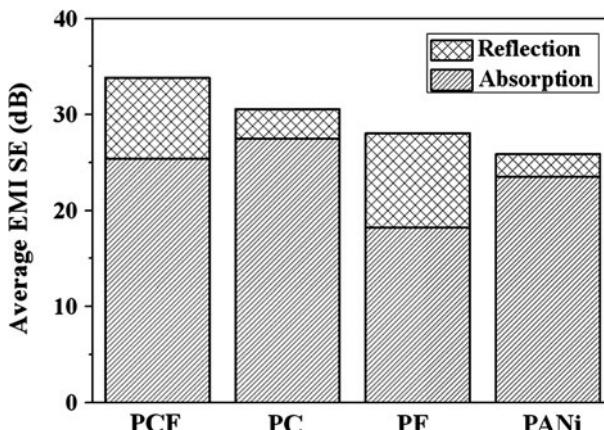

Fig. 7 Permeabilities of PANi, PF, PC, and PCF nanocomposites

Fig. 8 EMI SE of PANi, PF, PC, and PCF nanocomposites

Scheme 2 Schematic representation of EMI shielding contribution by MWCNTs and γ -Fe₂O₃; **a** PC, **b** PF, and **c** PCF

Fig. 9 Average EMI SE of various nanocomposites by reflection and adsorption effects

EMI is generally shielded by reflection and absorption mechanisms [32]. EMI SEs of various nanocomposites are specified by reflection and absorption in Fig. 9. EMI SE is defined as following equations [32].

$$\text{EMI SE}_T = \text{EMI SE}_R + \text{EMI SE}_A$$

$$\text{EMI SE}_R = 20\log(\eta_0/4\eta_s)$$

EMI SE_R and EMI SE_A stand for the EMI SE by reflection and absorption effects, respectively. η_0 is propagating domain and η_s is intrinsic impedance of the shielding material. EMI was shielded mainly by reflection for the $\gamma\text{-Fe}_2\text{O}_3$ -contained nanocomposites. However, the main mechanism of EMI shielding changed into absorption for the MWCNTs-contained nanocomposites. Therefore, the use of both MWCNTs and $\gamma\text{-Fe}_2\text{O}_3$ together might give the synergetic effects in EMI shielding as in the case of PCF.

Conclusions

PANi/MWCNT/ $\gamma\text{-Fe}_2\text{O}_3$ nanocomposites were prepared by in situ polymerization. PANi was coated uniformly on the surface of MWCNT/ $\gamma\text{-Fe}_2\text{O}_3$ as confirmed from the morphology investigated with SEM and TEM. The prepared nanocomposites showed the significant improvement in permittivity, permeability, and electromagnetic interference SE due to the magnetic effects of $\gamma\text{-Fe}_2\text{O}_3$ and the conductive effect of MWCNTs. EMI SE increased from 28.2 to 34.1 dB by incorporating MWCNT and $\gamma\text{-Fe}_2\text{O}_3$ in PANi. These additives contributed a large share to the synergetic improvement of EMI SE in both reflection and absorption mechanisms and the thermal stability of nanocomposites. PANi/MWCNT/ $\gamma\text{-Fe}_2\text{O}_3$ nanocomposites could be applied as the hybrid conductive additives in various polymer matrices as efficient EMI shielding materials.

Acknowledgment This research was financially supported by the Ministry of Education, Science Technology (MEST) and Korea Institute for Advancement of Technology (KIAT) through the Human Resource Training Project for Regional Innovation.

References

1. Olmedo L, Hourquebie P, Jousse F (1997) *Handbook of organic conductive molecules and polymers*. John Wiley and Sons, Chichester
2. Im JS, Kim JG, Lee SH, Lee YS (2010) Effective electromagnetic interference shielding by electrospun carbon fibers involving $\text{Fe}_2\text{O}_3/\text{BaTiO}_3/\text{MWCNT}$ additives. *Mater Chem Phys* 124:434–438
3. Liang J, Wang Y, Huang Y, Ma Y, Liu Z, Cai J (2009) Electromagnetic interference shielding of grapheme/epoxy composites. *Carbon* 47:922–925
4. Fugetsu B, Sano E, Sunada M, Sambongi Y, Shibuya T, Wang X (2008) Electrical conductivity and electromagnetic interference shielding efficiency of carbon nanotube/cellulose composite paper. *Carbon* 46:1256–1258
5. Novak BM (1993) Hybrid nanocomposite materials—between inorganic glasses and organic polymers. *Adv Mater* 5:422–433
6. Miyauchi S, Aiko H, Sorimashi Y, Tsubata I (1989) Preparation of barium titanate-polypyrrole compositions and their electrical properties. *J Appl Polym Sci* 37:289–293
7. Shen PK, Huang HT, Tseung ACC (1992) A study of tungsten trioxide and polyaniline composite films. *J Electrochem Soc* 139:1840–1845
8. Peng X, Zhang Y, Yang J, Zou B, Xia PL (1992) Formation of nanoparticulate iron(III) oxide-stearate multilayer through Langmuir-Blodgett method. *J Phys Chem* 96:3412–3415
9. Tai H, Jiang Y, Xie G, Yu J (2010) Preparation, characterization and comparative NH₃-sensing characteristic studies of PANI/inorganic oxides nanocomposite thin films. *J Mater Sci Technol* 26:605–613
10. Jansen SA, Duong T, Major A, Wei Y, Sein LT Jr (1999) Evolution of the electronic states of polyaniline: an ab initio analysis of the orbital states of PAni synthons. *Synth Met* 105:107–113
11. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. *Prog Polym Sci* 35:357–401
12. Wu TM, Chang HL, Lin YW (2009) Synthesis and characterization of conductive polypyrrole/multi-walled carbon nanotubes composites with improved solubility and conductivity. *Compos Sci Technol* 69:639–644
13. Ratna D, Abraham TN, Siengchin S, Karger-Kocsis J (2009) Novel method for dispersion of multiwall carbon nanotubes in poly(ethylene oxide) matrix using dicarboxylic acid salts. *J Polym Sci B Polym Phys* 47:1156–1165
14. Yun J, Im JS, Lee YS, Kim HI (2010) Effect of oxyfluorination on electromagnetic interference shielding behavior of MWCNT/PVA/PAAc composite microcapsules. *Eur Polym J* 46:900–909
15. Wu Z, Li J, Timmer D, Lozano K, Bose S (1970) Study of processing variables on the electrical resistivity of conductive adhesives. *Int J Adhes Adhes* 29:488–494
16. Nicolson AM, Ross GF (1970) Measurement of the intrinsic properties of materials by time-domain techniques. *IEEE Trans Instrum Meas* 19:377–382
17. Ghodgaonkar DK, Vardan VV, Varadan VK (1990) Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies. *IEEE Trans Instrum Meas* 39:387–394
18. Hong YK, Lee CY, Jeong CK, Lee DE, Kim K, Joo J (2003) Method and apparatus to measure electromagnetic interference shielding efficiency and its shielding characteristics in broadband frequency ranges. *Rev Sci Instrum* 74:1098–1102
19. Zhang L, Wan M (2002) Synthesis and characterization of self-assembled polyaniline nanotubes doped with D-10-camphorsulfonic acid. *Nanotechnology* 13:750–755
20. Kim BJ, Oh SG, Han MG, Im SS (2000) Preparation of polyaniline nanoparticles in micellar solutions as polymerization medium. *Langmuir* 16:5841–5845
21. Harada M, Adachi M (2000) Surfactant-mediated fabrication of silica nanotubes. *Adv Mater* 12:839–841
22. Stejskal J, Sapurina I (2005) Polyaniline: thin films and colloidal dispersions. *Pure Appl Chem* 77:815–826

23. Ruschau GR, Yoshikawa S, Newnham RE (1992) Resistivities of conductive composites. *J Appl Phys* 72:953–959
24. Makeiff DA, Huber T (2006) Microwave absorption by polyaniline-carbon nanotube composites. *Synth Met* 156:497–505
25. Zhongzhu W, Hong B, Jian L, Tao S, Xianliang W (2008) Magnetic and microwave absorbing properties of polyaniline/ γ -Fe₂O₃ nanocomposite. *J Magn Magn Mater* 320:2132–2139
26. Alam J, Riaz U, Ahmad S (2007) Effect of ferrofluid concentration on electrical and magnetic properties of the Fe₃O₄/PANI nanocomposites. *J Magn Magn Mater* 314:93–99
27. Yunze L, Zhaojia C, Jean LD, Zhiming Z, Meixiang W (2005) Electrical and magnetic properties of polyaniline/Fe₃O₄ nanostructures. *Physica B* 370:121–130
28. Shengqi L, Chunxia Z, Li T, Jinqing K (2010) Unique properties of polyaniline in the presence of applied magnetic field and ferric chloride. *Mater Chem Phys* 124:168–172
29. Zhifu H, Yang F, Xiaojuan W, Hua P (2011) Microwave absorption properties of PANI/CIP/Fe₃O₄ composites. *Synth Met* 161:420–425
30. Yu Y, Che B, Si Z, Li L, Chen W, Xue G (2005) Carbon nanotube/polyaniline core-shell nanowires prepared by in situ inverse microemulsion. *Synth Met* 150:271–277
31. Shaffer MSP, Windle AH (1999) Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. *Adv Mater* 11:937–941
32. Al-Saleh MH, Sundararaj U (2009) Electromagnetic interference shielding mechanisms of CNT/polymer composites. *Carbon* 47:1738–1746
33. Wang LL, Tay BK, See KY, Sun Z, Tan LK, Lua D (2009) Electromagnetic interference shielding effectiveness of carbon-based materials prepared by screen printing. *Carbon* 47:1905–1910
34. Im JS, Park IJ, In SJ, Kim T, Lee YS (2009) Fluorination effects of MWCNT additives for EMI shielding efficiency by developed conductive network in epoxy complex. *J Fluor Chem* 130:1111–1116
35. Lee JM, Kim SJ, Kim JW, Kang PH, Nho YC, Lee YS (2009) A high resolution XPS study of sidewall functionalized MWCNTs by fluorination. *J Ind Eng Chem* 15:66–71